WAVE FORCE MODELING

INTRODUCTION

As a submarine operates near the free surface, it encounters complex forces which may
cause unsatisfactory or unstable depth control. The lift and moment from incident waves
increase in an exponential manner as the surface is approached. To maintain a desired depth,
the ship’s ballast is adjusted to counteract steady forces. Control surfaces are used to counter
dynamic changes. A small depth excursion or change in forces can overwhelm the planes and
cause a loss of depth control. The consequences range from losing radio reception to
compromising the ship’s mission.

The effects of incident waves on a submerged body can be divided up in several
categories. The largest, the first order forces act at the incident wave frequency. These forces
move the submarine, but usually result in oscillations about a mean state. Second order forces,
which are the result of wave diffraction and wave interaction, have several different frequency
components.

Wave diffraction of a single frequency wave results in a steady force and a varying
force at twice the wave frequency. The double frequency force is typically neglected, as the
large inertia of the submarine effectively filters it. Interactions of waves at different
frequencies also results in forces. These consist of a component acting at the sum of the wave
frequencies and a component acting at the difference of the wave frequencies. The sum
frequency force is typically neglected, as it is also filtered by submarine’s inertia. The difference
frequency component results in a slowly varying force on the submarine.

The slowly varying forces are the principle cause of difficult periscope depth control
(Ni, Zhang, and Dai, 1994). They are compensated for using control surfaces and occasional
adjustments of trim.

During the design phase, engineering decisions are made which will determine the
ship’s ability to remain at periscope depth. Of these, the most critical are the height of the sail
and control surface sizes. Every foot added to the sail gives a deeper periscope depth. Larger
planes improve the operator’s ability to compensate for changes in suction forces. However,
these improvements are not without cost. The sail and other appendages are a large fraction of
the total drag, and can restrict the ship’s top speed. Larger movable control surfaces can

adversely affect the high speed casualty recoverability ( Jackson, 1992, p. 15-9).
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The goal of this thesis is not to provide new tools for the designer, but rather new
means to enhance control for the operators of current submarines. Due to this focus,

simplified means of modeling the wave forces for a few specific cases will be used.

REVIEW OF LINEAR DEEP WATER WAVES

The pertinent features of linear deep water waves will be reviewed to provide
background for the following sections. The coordinate system used for the examples is shown
in Figure 5. For the examples in this section, it will be assumed that the submarine is oriented
with the bow pointing into the page. Consistent with the global coordinate system from
Chapter 11, the distance from the surface to the submarine centerline is Z. The submarine

diameter is D.

Wave speed,c

<
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shown at t=0

Figure 5. Coordinate Definition for plane progressive wave, adapted from Sarpkaya and
Isaacson (1981, p. 151)

For a wave of wavelength I, a wave number, £, can be defined.

(= 2m (30)
L

Assuming that fluid is incompressible and inviscid Laplace’s equation can be applied.

It is thus desired to find a solution to:

2 2 31
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To this, the boundary conditions at the free surface, and the bottom must be applied:
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For small amplitude waves in deep water, the following solution can be obtained

(adapted from Sarpkaya and Isaacson, 1981, p. 159):
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where 1 is the distance from the surface to the average level (2= 0), @is the angular

{

frequency of the incident wave,  is the displacement of a particle in the x direction, and ¢

is the displacement of a particle in the z direction.

A key parameter in oscillating flows is the Keulegan-Carpenter number:

< Ynearl (45)
D

whereU cqnisS the average velocity across the characteristic dimension D.

By taking the average of the velocity given in Equation (40) , and substitution into

Equation (45), the expression for the Keulegan-Carpenter can be reduced to the following:

= 2H e (46)

Equation (46) is the Keulegan-Carpenter number based on the cross flow velocity of the

undisturbed wave at the same depth as the centerline of the submarine hull.

WAVE FORCE REGIMES

There are different regimes of interaction between a submerged body and a wave field.
Broadly, they can be broken into several areas. Inertial interaction, where the body acts like a
particle in the wave field. Wave diffraction, where the bodies influence upon the wave field is
accounted for. Finally, there are flow separation (viscous) effects. The relative importance of
each of these effects can be determined by examining the relationship the body size to the

wave parameters. (Sarpkaya and Isaacson, 1981, pp. 381-380)
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Figure 6. Wave force regimes (Sarpkaya and Isaacson, 1981, pg. 385)

To estimate the significant effects for a typical SSN, a typical operating condition is

assumed. For a 300 foot submarine with a 35 foot diameter, a typical periscope operating

depth would be about 50 feet from the centerline of the ship to the free surface. Using average

values for sea states three and four and assuming deep water compared to the wavelength, the

following quantities were calculated at a depth of 50 feet:

Parameter Sea State 3 Sea State 4
Significant Wave Height 3 6
Average Period 6.623501 7.154522
Wave Length 224.6467 262.1114
Wave Number 0.027969 0.023971
K 0.042339 0.103414
D/L 0.1558 0.133531

Table 2. Estimated Wave Loading Parameters

The Diameter/Wavelength (D /L) ratios and the Keulegan-Carpenter numbers of

Table 2 show that for the sea states of interest, wave diffraction much more significant than

viscous forces. It can be concluded that an inviscid analysis should give good results for the

wave forces. However, this is only rigorous for an unappended hull, as the control surfaces

and sail on an actual submarine will experience viscous effects.
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SOLUTION FROM SLENDER BODY THEORY

Wave force solutions for several specific cases were generated for the SUBOFF by the
SSBN Security Department of the Johns Hopkins University Applied Physics Laboratory. A
slender body solution with some three dimensional corrections was used. The specific method
used for the generation of the first order motions and second order forces is detailed by O’Dea
and Barr (1976, pp. 7-25).

A seaway approximation consisting of a small number of regular waves was used to
model sea states three and four. For each sea state, the resulting data were separated into two
categories. The effects of the first order forces were given in terms of body motions. The
effects of the steady second order forces and the difference interaction forces were provided in
pounds force.

Seaway model

A random seaway can be represented by the superposition of a large number of regular
waves. The seaway was approximated by superimposing # regular waves. The frequency and

height of these waves was determined using the Bretschneider spectrum. It gives the spectral

density in terms of the significant wave height, Hs , and the peak frequency, .
»  BSRef’d *7)
S((A)) = SH—SeH 4, D B
160, (@ / w,)°

To model sea state three, a significant wave height of three feet was used, with a central

frequency of 0.836 radians per second. This results in the following spectrum:
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Figure 7. Example Sea State three spectrum

Figure 7 gives a statistical picture of the seaway, but is not immediately useful for time
domain simulation. One way to obtain a time history is to represent this stationary process as

a the sum of a series of sine waves:

n (48)
n(t) = ;A sin@t+a,)

Where A is the amplitude of th¥" wave , andiis its randomly chosen phase angle.

If the number of sine waves is reasonable large, and the frequencies and amplitudes of
each component are chosen to achieve the same energy as the section of spectrum it
represents, Equation (48) will give a good representation of the ocean surface.

The method chosen was to divide the spectra into N segments of equal areas. This

results in N sine waves all with equal amplitudes. Integration of Equation (48) yields:
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H2, (49)
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Because the spectrum extends to infinity, it was chosen truncate the spectrum at a
point where the area was a fraction C of the total area. The amount of area to be represented
by each sine wave is equal to its mean square value. So the amplitude of each sine wave is

equal to the square root of the area it represents times the square root of two.
A H [T 50
2 V2n

Equation (48) can be integrated up to some frequency “ | which represents the

frequency at which the spectral area is equal to IC/N times the total area.

4 2 . (51)
[ S(w) do = Hs 1
) 16 n
Solving Equation (51) for & yields:
(52)

@ = w, %In@%@

Because the spectral level is insignificant below ¥ equal to 0.6, , the frequency if the
first segment was determined as follows:

(0.6, + ) (53)

The remainder of the frequencies were determined by taking the midpoint of the
frequencies at either side of the area segment.

o= Qata (54)
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Figure 8 illustrates the method used, approximating the spectrum with sinusoids.
Nineteen equal area sections are divided, with the center frequency of each segment marked

with a circle.
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Figure 8. Spectra area division and mean frequencies

Figure 9 shows the ocean surface which results from the use of this method for the
case of sea state three, peak frequency of 0.862 radians per second. Nineteen sinusoids were

used to approximate the spectra, and the phase angles were randomly chosen.
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Figure 9. Sea surface approximation for sea state three using nineteen sinusoids

First order forces
The first order wave effects were provided in the form of submarine motions. They
were given as a series of phasors, the real part of the summation representing the actual

perturbation caused by the first order wave forces.

2(t) = Zi”:l z git@t+a) (55)

6=y g 6
Because the first order motions were provided for a specific depth, it was required to
correct Equations (55) and (50) for depth. The first order motions roughly correspond to the

particle motions given by Equation (42), so an exponential decay was used to derive the

following correction factor:
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Application of Equation (57) to Equations (55) and (56) results in:
2(t) = an z gV Uata)k(z-3) (58)

B(t) — zn Qe—\/jl(w\tﬂ%)_lﬁ(z_g) (59)
=11

The displacements given by Equations (58) and (59) are not suitable for inclusion in
the submarine equations of motion. For this, an acceleration is required. Differentiating twice

with respect to time results in:

3(t) = _Zi”:l(qzz gi@tra)k (z-3) (60)

e(t) - _zn MZQG—i(@HG’i)‘K‘ (z-3) (61)
i=1

Equations (60) and (61) were incorporated as force and moment disturbances in the
equations of motion found in Chapter II. To test the validity of this approach, an open loop
simulation was performed using the accelerations from Equations (60) and (61) for one sea
state and heading. Figure 10 shows the results of this simulation, as well as the expected first
order motions. The upper curve shows the expected first order motions, and the lower curve
shows the results of integrating Equations (7) through (11) with the accelerations from
Equations (60) and (61). Although there was some drifting motion, the character of motion
and the approximate amplitude of each cycle of motion very close. The drifting motion was a

result lack of the lack of open loop depth stability, which is characteristic of submarines.
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Figure 10. Submarine response to first order accelerations, and expected response

Second order forces
For a particular depth and wave time history, the second order forces were given in the

following form:

20- 30, 3nd ) )

M(t) = an zn lMije(i((‘Q_wj‘)H'ai +0; )) (63)
i= j=

Z(1) represents the force acting at the body fixed coordinate system in the Z direction
and MWis the moment acting about the Y axis. It should be noted that Equations (63) and

(65) include the slowly varying forces (i # ) and the steady forces (i =] ).
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It can be determined from analysis of the changes of second order forces with respect
to depth given by Crook (1994, pp. 61,62) that the steady forces with the following exponential

decay factor:

e—2kz (6 4_)

The slowly varying order wave forces vary with depth according to the sum of the wave

numbers:

e (kitk)z (65)
e_(k\ +kj)%

Application of Equations (64) and (65) to Equations (62) and (63) results in:

i —w: Dt+a +a: )-(k +k _ 66
200=3", 3" Fe bt o) (66)

M (t) _ zn Zn M. e(i((‘oq—wj ‘)t+ai +a; )= (k +k )(Z‘Z)) (67)
i=t Lj=1"1

The real portion of Equations (66) and (67) represents the steady and slowly varying

second order wave forces acting on the submarine, with correction for depth.

Inclusion of wave forces in equations of motion

The first order accelerations and second order forces had to be combined to form the
force and moment disturbance accelerations for use in the deeply submerged equations of
motion (Equations (7) and (8)).

OF, () O _200, - 200 (68)
Mg (O Fpocere = BOH ™ B8
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CONCLUDING REMARKS

An elementary review of linear wave theory was presented. The case of interest, a
submarine at periscope depth, was examined to determine the salient elements of its interaction
with the incident waves. The parameters suggested that the major features of the incident
wave effects on the submarine could be determined by using a potential analysis with inertial
and diffraction forces accounted for.

The Bretschneider spectrum was used to determine the spectral density functions of
the sea states of interest. For the purpose of time domain simulation, the spectrum was
approximated by the superposition of a number of regular waves with randomly chosen phase
angles.

The first order force transfer function and second order forces response amplitude
operators were provided for the SUBOFF for a nominal speed and depth. Approximate depth

scaling was introduced to allow use at depths other than nominal.
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